
-
-

N —

/ AO—A077 525 MARYLAND UNIV COLLEGE PARK COMPUTER SCIE’j CE CENTER FIG 9/ge
LOCAL RECONFIGLmATION OF NETWORKS OF PROCESSORS: ARRAYS , TREES,——FTC (U)
.JUL 79 T DUBITZKI , A WU • A ROSENFELD AFOSR—77—3271

UNCLASSIFIED CSC— TR— 790 AFOSR—TR—79—t 159 NL

END
D~ Tt
flt.r 0

I —go
0DC

• ~~~r:r -

âE~~.T&.79 -i 15 9

COMPUTER SCIENCE
TECHNICAL REPORT SERIES \~ ~~\\\~~~c

i
~~~~~~~~~~~~~ • UNWERSITY OF MARYLAND

COLLEGE PARK, MARYLAND
* 20742

79 ii  23 025
_ -~~~~~~~ r put~l10 

re~~ft~~*
rtbUtt0~ 

%lULtatt

~~~~~~~ ~~~~~~~~~~~~~~ ~
• -•

~~~~~~~ 
-. 

~~~~~~~~~~~~~~~~
- •
~~~~~~~~

•‘



- -‘ “~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~ _.~~~~~~~-,~--—,-— .- : r~~.rC’r’ - . . _,. _~ - ~~~~~~~ - - ~.—.-!
__ -

TR~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ C~~ Jui~~~~~7~J/~~~
j  AF~d~~~-77—327l _________

I ..1 ( ~~ - -- - .

~~~—‘ (
~~ FOCAL J!CONFIGU RATION OF ~~ TWORXS ,/ ~~~
~~~~~~~OCES~ ORS ~~RRAYS, TREES~~ AND GRAPHSJ L~ ?@ Tsvi /~ ubitzki1

Angela /tJu
Azriel/Rosenfeld

Computer Vision Laboratory ~ ~~~~~~~~~~~

Computer Science Center r~ -

University of ~~~ryland ç\ ~~~~~~ \~ •~~College Park , MD 2 074 2 ‘3 - X9l~

! ~~~~~~~~~~~~~~~~~~~~~ - - -- - ____

ABSTRACT

This paper studies local reconfiguration of trees into
arrays and vice versa. It also studies the construction of
adjacency graphs and guadtrees for images stored in cellular
array processors.

AIR F ORCE 0Fpi~~ OF S
Th~I S te~~~1 ~~~~~~~~~~~ ~~~~~~ 

~~~~ (AF SC)
apprQI,~~ ~

~port ha~ be.~fl4~
or PUblic ,., ~~LZ r eV I eV ,

~t Zj b~tj ~~ an~ ~~A. D. ~~~~~ ~ ~~Limite4 . ~~~ -~~ —l2 (7b)
IOO~Uijo~,j it _ 11

~~
- -

~~~
_/

The support of the U f S_ piir Forg~~ Qff ice of Scientific
Research under Grant!~~F~ SR-77-327l is gratefully acknowledged ,
as is the help of Ka~~r n ~~ iT~~F T n  preparing this paper .

79 ~~ 
23

~~~~~~~~~~~~~~~~~~~~~~ _ _ _


I

1. Introduction

In [1] we introduced the concept of local reconfiguration

of networks of processors, and presented algorithms for con-

verting between strings and cycles, arrays, trees, etc.

Section 2 of this paper discusses direct reconfiguration of

trees into arrays and vice versa. Sections 3 and 4 describe

how reconfigura tion can be used to construct the adjacency

graph and quadtree of an image stored in a cellular array.

D C C

:A
T=:~
I~

on
~

;o1
~

~rSli.ii~~~~

_
_ _ ~~

.~~~~~ - _ _ _ _ _ _ _ _ _ _ _

—

~~~~~~~~~~~~~~~~~ ~T~TIIT~ ITI ~
2. Array/tree Reconfiguration

In the reconfiguration algorithms described in [1], the

initial or fina l graph was always a string . Hence tr ansform—

ing from one configuration to the other, e.g., between a tree - -

and an array , must be done through a string, and thus will

• take 0(N) time, where N is the number of nodes in the graph.

In this section we show how to directly convert trees into 
-

arrays and arrays into trees in O(1~) time . —

The problem of using reconfiguration techniq~.ies to balance 
— I

a binary tree in parallel has also been considered. However , -

it seems to require 0(N) time, since 0(N) connections may all 
-

have to migrate through the root. Thus it is simpler to

balance a tree by converting the unbalanced tree into a string -

and then again into a balanced binary tree by the method

described in [1].



Algorithm 2.1: Reconfiguring a two-dimensional array into a

minimum-height binary tree.

Let A be a rectangular array of automata (Fig . 1) which

contains N nodes where N = r •s  (r~ s) for integers r ,s. D is

a distinguished node at the northwest corner of A.

The basic steps of the algorithm are :

(1) Send a signal down from D along the leftmost vertical

line. Upon receipt of this signal , each node below D along

the vertical line sends a signal to erase the series of hori-

zontal arcs emanating from it in A. This gives us an unbalanced

binary tree with height at most r + s (Fig. 2). We can view

this tree as composed of one horizontal string of length s

and s vertical strings of length r - 1. (The distinctions

between left, right up and down connections at each node are

known in A. )

(2 ) D sends a signal to order each string to turn into

a balanced binary tree in the way described in [1]. This takes

at most 0(s)  time . We now have r + 1 binary trees : one with

H. height 0(t l og  Si )  and s with height 0(ilog (r-1)i). In the

above process the tree arcs are marked .

(3) Define the tree with s nodes as the “horizontal” tree

T and the t trees with (r-l) nodes as “vertical” trees. We

will hang the “vertical” trees on the leaves of the horizontal

j tree T. This is done as follows:



D (Fig. 2) sends a horizontal triggering signal through

all the nodes of the tree T in A. Upon arrival at a node i

(including D itself ) the signal causes node i to check how
:‘ ~

many marked arcs of the tree are connected to it. If that

- . number is 1 or 2 (except the root of T which is marked and

considered as a node with 3 tree arcs) it means that respec-

tively 2 or 1 of the “vertical” trees can be hung on node i

in T. Then node i sends (ahead of the triggering signal) a

searching signal for 2 or 1 roots of “vertical” trees either

through the node below it in A or to the right, checking at

each node whether the “vertical” tree below it, in A , is still

connected to it. If it is still connected , then it can be

assigned to node i of T, i.e. node i connects itself to the

roots of its assigned trees and the arcs of A connecting these

“vertical” trees to the upper horizontal line of A are dis-

connected. All the new connecting arcs to the roots of the

“vertical” trees are marked as tree arcs. The horizontal

triggering signal continues to the right one time unit af ter

the searching signal starts, in order to avoid too many temporary

connections at any node of T. In case the above searching sig—

nal , starting at node i, does not find enough needed unassigned

“vertical” trees to its right, it bounces back to the left in

the upper hor izontal line of A to look for unassigned “vertical”

trees left by the previous searching signals. This is not done

when i is the rightmost node in A’s top line.

____ -



( 4 )  All the unmarked arcs (of ~ ) are erased by a breadth

f i rs t  search signal from D sent down the spanning tree of A.

In the following a leaf is defined to be a node which

does not have two sons in T and is said to have one or two

null links .

Claim 2.1.1: There are enough null links at the leaves of T

to hang all the “vertical” trees in A.

Proof: There are s nodes in T. By induction the number of

null links in a binary tree with s nodes is S + 1. On the

other hand there are only s “vertical” trees in A.

Corollary: If the rightmost node in A’s top line finds under

it one unassigned tree to be hung on it, then it doesn ’t bounce

- a signal back along A ’s top line since Claim 2.1.1 proves that

there is one less “vertical” tree in A than needed to fill

all the null links.

Claim 2. 1.2: The height of the combined tree formed from T

and the tree hanging from it is at most one unit more than the

height of a balanced binary tree formed from a string of

N = s~r nodes.

-- 
Proof: The height of a balanced binary tree with N nodes is

-
. h = L log2Nj. The total height of the combined tree constructed

by Algorithm 2.1 will be (see Fig. 3):

H = 1 + L log2sJ + L log2(r—l)J ~ 1+ L log,sj+ i i.oq,rj ~ 1+l1og2Nj

so that H ‘ h + 1. 

~~~~~~~~~ 
.
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Claim 2.1.3: Algorithm 2.1 takes 0(5) time. -

Proof: Step (1) of disconnecting the horizontal lines in A

takes O(s+r) time.

• Step (2) of converting all the strings into binary trees

takes -0(s) time.

Step (3) of converting the binary trees into one tree

takes 0(s) time.

Step (4) of erasing nontree arcs takes 0(s+r) time.

rk 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~ ----~----- - - .4


Algorithm 2.2: Reconfiguring a complete binary tree into a

two—dimensional array.

Let T be a complete binary tree of automata with N nodes.

Let D be the root of T~ By a complete tree we mean a tree

in which all the paths from the root to the leaves are of the

same length. In the following a leaf node of T is a node

0 with two null links.

The basic steps of the algorithm are:

(1) Conversion into a tree of strings:

In parallel D sends two signals down T, one at unit speed

and the other at 1/3 speed. The unit speed signal bounces

back from the leaves of T and meets the 1/3 speed signal at a

node in the middle of each path from D to the leaves of T

(Fig. 4). Each such meeting node marks itself and turns the

subtree rooted at it into a string in the way described in [1).

The unit speed signals continue up to D and make it convert the

binary tree rooted at it and having as leaves the marked nodes

into a string also. We thus obtain a horizontal string (the

last one) with two folded strings hanging from every other

node of it (Fig. 5), since in converting a binary tree into

a string in the way described in [1], every two leaf nodes are

separated by a nonleaf node, and the above twofold strings

hang only on leaf nodes. D knows that the process of turning

the specified subtrees into strings has terminated as soon as

it receives (from its two sons in T) the string generating

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~~~~~— ——.~~~~-



- ~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~ - -
- —

~~~~ J*~ -
~~~
“

‘I- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
- - -~~~ -~~~~~

signals which bounced back from T’s leaves. All the arcs

of T not participating in the above construction are erased

• as follows: D send breadth first erasing signals down in T.

The signals bounce back from the leaves towards D and on

their way back erase every arc of T except the first level of

arcs above the leaves and above the marked nodes.

(2) Formation of a pseudo—array :

D orders every hanging point (in the horizontal string of

Fig. 5) of a twofold string to order the first node in the

right part of the twofold string hanging from it to connect

itself to the node to its right and then disconnect itself from

its old hanging point. The rightmost node of the horizontal

string doesn ’t have a nonleaf node to its right and therefore

orders its right neighbor in the twofold string hanging from

it to be a new hanging point to its right (thus part of the

horizontal string) from which hangs the rest of the right part

of that rightmost twofold string (Fig. 6). We now have a

binary tree composed of a set of strings hanging vertically

from a horizontal string. This binary tree is a “pseudo-array ”

and we need only generate the horizontal connections in it in

•

-

order to get an array. Note that the rightmost hanging string

is one node shorter than the other hanging strings (Fig. 6).

•
(3) Conversion into an array:

First we define for each node in the pseudo—array of step

(2) what its upward, downward and horizontal connections are.

- - .----- -~-~-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

-
-

For this purpose D sends a breadth-first search signal down

the pseudo-array. The signals bounce back from the bottom

nodes of the vertical strings (Fig. 6) and go back up in

the strings of the pseudo-array . - Each entrance to a node

in this path is a downward connection and each exit an upward

connection. Upon arriving at the marked nodes of step (1)

the def initions of the connsctions change to horizontal un til

the signals reach D again. Each node in the horizontal line

will not emit a signal in the horizontal direction towards D

until it has received a hor izontal signal. Thus upon receiving

• two signals D will know that this marking process has termi—

nated . At this stage D orders each of its horizontal neighbors

to connect itself temporarily to the node on its downward con-

nection (Fig. 7). Then each of the horizontal neighbors of D

orders its vertical neighbors and the node below D to connect

themselves. The above temporary connections are then discon-

nected. In turn each horizontal neighbor of D starts such a

connecting process too. This process propagates in the first

upper row of the pseudo—array; at the same time each node

below that row, having established a horizontal arc, starts

such a process in the row below it, and so on until the net-

work of horizontal arcs in D is completed .

Claim 2.2.1: The length of the string formed from the upper

part of T (the upper row of the final array) is 0(4~)

_ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

__ ~~~~
-- -

~~~~
- ,

~~~~~~
.- - -

~~~

• ~~ ~ ~ -,r-

Proof: The number of nodes in T is N which equals 2~~
1 

- i

in a complete binary tree with height h. The marked nodes in

step (1) of Algorithm 2.2 divide T into an upper complete tree

with height h/2 and the rest of T. In that upper part of T

we have N ’ = 2IV2~~ - 1 nodes. Therefore N’ is 0(v’~).

Claim 2.2.2: Each hanging point in the pseudo-array of

step (2) of Algorithm 2.2 is the middle of the twofold string

hanging from it and the lengths of all the twofold strings in

the pseudo—array are equal.

h Proof: A complete binary tree has equal numbers of nodes in

the right subtree and lef t  subtree of its root. The subtrees

forming the twofold strings in step (1) of Algorithm 2.2 are

complete binary trees. The process of converting a binary

tree into a string [1] produces a string in which the root of

the tree is an internal point, all the nodes to its right come

from the right subtree of the root and all the nodes to its

left come from its left subtree. Thus the root of the tree

(a hanging point) is the middle of the twofold string. The

lengths of all the twofold strings in the pseudo-array are equal

since all the marked nodes of step (1) are at the same depth

below D and hence all the subtrees below them are of the same

size.

Corollary: The array formed in step (3) of Algorithm 2.2 is

of size 0(1~) x O(/ii). This is due to the fact that the upper

horizontal line of the array contains O(/~) nodes by Claim 2.2.1 



and the lengths of all the vertical strings hanging from the

horizontal line of step (2) are equal by Claim 2.2.2.

Note that Algorithm 2.2 is applicable with slight changes

• to non—complete balanced binary trees. In particular if we

are dealing with height-balanced binary trees with minimal

numbers of nodes , then the upper horizontal line of the array

holds less than ,4~ nodes since the marked nodes of step (1)

(closest to the root) are now closer to D than in the case of
I

a complete binary tree because of the existence of short

paths going through a node to the leaves of T. Also the

difference in length between the vertical hanging strings

grows with N since we are dealing with subtrees (generating the

twofold strings) which differ more and more in their numbers

of nodes as the height of T grows. These factors give us

finally very incomplete rectangular arrays. For an example

of a height-balanced binary tree with height 6 and a minimal

number of nodes see Fig. 8 and 9.

Even the usage of augmented memory at the nodes to balance

the twofold strings of Fig. 9, by counting , wouldn ’t make them

equal in length. Trying to balance a tree in parallel in-

volves shifting nodes between its already balanced subtrees

• and thus involves communication conflicts and rebalancing of

the subtrees.

— ~~~~~~~~~~~~~~~~~~ 
.~~,. ~~~~~~~~~~~~ -

II,. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - ..-—-—‘——~——~~~~•.-•..,•• --•• * - -  -



_ _ _  _ _ _ _  

—-- :1— ___!~~ ~

Claim 2.2.3: Algorithm 2.2 takes 0(61) time.

Proof: Step (1) of constructing the tree of strings takes

0(log N) time by [1]. Step (2) of constructing the pseudo-

array takes constant time. Step (3) of forming the horizon-

tal lines of the array takes 0(61) time since we already have

a skeleton of an array of size 0(61) x 0(61) .

I

ii

$1



3. Adjacency~ Graph Construction

Let A be an array (of N processors) in which a picture

P is stored, i.e. a value is stored in each node of A. Then

A consists of regions S~ each of which is a connected corn-

ponent of constant value. With each S1 we can associate a

distinguished node ~~~ e.g., the leftmost of its uppermost

nodes (note that this node is on S• ’s outer border). In
i

this section we show how to reconfigure A so as to construct

a graph whose nodes are the Di’s and where two Di’s are joined

-
. by an arc if f the corresponding S1’s are adjacent. This

graph G is called the adjacency graph of P.

- 

~. The Di’s can identify themselves by a method described in

Lemma 2 of [4], using signals that are sent around the borders

of the Si’s. This process is initiated by the distinguished

node D of A constructing a spanning tree of A and sending a

triggering signal down the tree. The process takes 0(perimeter

of S
~
) time; note that this may be 0(N). If we used signals

- 

~
-

, that can travel outside the Si’s, we could find any D~ in

O(diameter of ~ 0(61) time; but it is difficult to do this

for all the Si’s simultaneously , since many signals may have

• to pass through the same place. A solution to this problem

is contained in a recent paper by Kosaraju [5].

Each D
~ 
now constructs a breadth-first spanning tree T1

of its region 
~~~~~~~ 

It then sends a signal s around the outer

---~~~~~- - - --------- ~~ — A

.— -.•—- . .
~~~~

-

— border of which carr ies along with it a direct link to

D . .  At each step, s checks for changes in the values of the

adjacent nodes that are not in S~~. Any such change implies

that a new region S~ adjacent to S~ has been encountered .

(Of course , it may also have been encountered before.) In

particular, at the initial step, the non—Si value (or values)

adjacent to D
~ 

defines such an S
3
.

Whenever a new S. is encountered, s splits off a subsidiary

signal s’ that carries a direct link to D
~ 

up the spanning

tree of S., while s itself continues around the border of S1.

If necessary, s’ waits until the spanning tree of S~ has been

completed . While traveling up the tree, s’ may also have to

wait for other signals that are traveling up it; but the

delay is at most 0(N). When s’ reaches ~~~ a direct link has

been established between D
~ 

and D~ . -

When s has traveled completely around the outer border

of S1, we thus have guaranteed a link between D
~ 

and D~ for

every S
3 
that is adjacent to S~ along its outer border . (If

S
3 
touches S~ several times , several links will be sent from

to D~ ; but when they arrive, they coalesce, since only one

arc is allowed between a given pair of nodes.) The entire

process thus takes 0(N) time.

For any two adjacent regions 5h and Sk, either Sh is

adjacent to the outer border of Sk or vice versa ; it is not 

---~~~-~~-- - - - --- .-—~~~ -~~~~- - ~~ - -—-—--— ,-•--- 



- .-
‘ 

—- — -•-- --- ----- — . .- —- .- .—-- - , - -,--- — -- —

L i

possible that each of them is inside a hole in the other one,

since they cannot surround each other. Hence the construction

described in the preceding paragraphs will create a connec-
- 

tion between the distinguished nodes of every pair of adja-

cent regions in 0(N) time.

Finally , we indicate how the distinguished node D of A
I

- can tell that the process of constructing the adjacency graph

j  is complete. In the process of the Di’s identi fying them—

• selves, certain marks exist on the borders of the Si’s.

Af ter each D1 identifies itself , it sends s around its border

• 
which splits and carries links from D

~ 
to all the neighboring

D ’ s; thus D
~ 
knows when all of these links have arrived.

When this happens, D
~ 

sends an erasing signal down the span-

ning tree of S~ to eliminate all the marks. Meanwhile, the

leaf nodes of the spanning tree of A send back signals

toward A’s distinguished node D which are stopped by the

marks. Thus when the signals reach D, we know that the marks

are all gone, which means that the Di’s have all been created

-
- 

and have joined themselves to all their neighboring D
3

1 s.

- It should be pointed out that the adjacency graph of P

- may have nodes of degree 0(N), since a large region may have

• many regions adjacent to it. Thus if the allowable node degree

is bounded, we cannot establish direct connections between

- all pairs of D1’s whose regions are adjacent. Instead , we

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~—, —-~~~~~~~~~~ ,- - - -~~-~~— -- . - -- . - — - - - - —---.~~~~~- ,-— --- --



can pass each signal up the spanning tree until it can go

no further, i.e., until the nodes above it have all exhausted

their allowed degrees. Thus the distinguished nodes of the

regions adjacent to S~ will have direct connections that

reach as high as possible in S
i
’s spanning tree, i.e., that

come as close as possible to D .. Since the number of regions

adjacent to S~ cannot exceed its perimeter , which cannot ex-

ceed its area , there is room in the tree for all the needed

connections.

It is straightforward to compute various properties of

• each region; examples are area, perimeter , coordinates of

centroid , etc . These computations are carried out with the

aid of the spanning tree, and take 0(tree height) time, which

unfortunately may be as high as 0(N). The results can be out-

put by the distinguished node of the region, or stored along

a path ending at that node (or at the node itself , if aug-

mented memory [3] is allowed). They can then be used as in-

puts to region merging processes carried out on the graph . 

•—- - - -  - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~ - - --~~~- ‘ - -— — . ~~_ -----flfl ~~~~~~~~~~~~ u _ z _ r .



4. Quadtree Construction

The quadtree representation of a picture [6] is obtained

by recursively subdividing it into quadrants until blocks of

constant value are obtained; this subdivision process is

represented by a tree of degree 4. Let A be a rectangular

array with N nodes (N = x 2’~, K integer) in which a pic-

ture P is stored, as in Section 3. In this section we show

how to reconfigure A to construct the quadtree of P.

First we check whether P has constant value or must be

subdivided into quadrants. This is done as follows: The

distinguished node D of A (which we assume to be located at

its northwest corner) constructs a breadth—first spanning tree

of A. The leaves of this tree send their values up the tree.

If a node receives different values from its sons, it transmits

a “different” signal upward; if it receives the same value

from all of them, it transmits that value. After 0(61) time,

D receives either a “different” signal or a value. In the

latter case, the quadtree consists of D itself together with

the associated value. In the former case, A must be subdivided.

Subdivision into quadrants is done as follows: D sends a

pair of signals to the right along the top row of A, one at

• unit speed and the other at 1/3 speed. The unit speed signal

bounces back from the right end of the row and meets the 1/3

speed signal in the middle of the row. At the same time D

sends two signals down the leftmost column of A which meet

— — - ----- — --— - - - . - —- — - — -- . , • - ____a._ -- --—. — - -- —



- —  ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~ 
- - - —~~~~•-

in the middle of the column . These row and column “midpoints”

send unit speed signals downward and rightward , respectively.

These signals meet at the “midpoint” of P , which is considered

from now on as the new distinguished node 5 of A (Fig. 10).

Actually S is the southeast corner of the northwest quadrant
of A. Also, the row and column through which these signals

passed are marked . The subdivision of D into quadrants is by

lines belo~i the marked row and to the right of the marked

column, respectively (see Fig. 10).

S now starts a search for nonuniformity in each of its

four quadrants. These searches are analogous to the one made

by D, with the obvious modifications to allow for the fact that

D is adjacent to, rather than in , three of the quadrants, and

is at a different corner of each of them. A spanning tree is

constructed in each quadrant, as bounded by the marked row and

column , to test for uniformity. At the same time, the distin-

guished node of each quadrant is found ; it is the southeast

node of its northwest subquadrant. A direct link is transmitted

from S to each of these distinguished nodes.

If any quadrant is found to be nonuniform , it is fu rther

subdivided as just described. At each step, the “middle” rows

— and columns are marked so that the signals at subsequent steps

can bounce off them and the spanning trees can be confined to •

them. This process is repeated (in parallel) until no more

• - , - - —--•--
~~
.-—--—•—---- -

~

non—uniformities can be found. This results in a set of

uniform-valued blocks, each having a distinguished node that

is directly linked to the distinguished node of its parent

block (Fig. 10).

It is easy to see that the quadtree construction takes

0(61) time. Indeed, at each step, the time required to check

a block for uniformity , f ind its distinguished node, and sub-

divide it if necessary, is 0(block diameter). The successive

block diameters are /W, 61/2, 61/4 ,. .; hence the total time

is 0(61) + 0(61/2) + 0(61/4) +. . . = 0(61) .

The degree of each node in the quadtree construction pro—
-

- cess is bounded (see Fig. 10). Indeed , even in the worst

case where every node of A is a leaf node , there are only

about N/3 nonleaf nodes . Moreover , since the nodes are at

“midpoints” of quadrants , it is easily seen that no array node

can be a tree node at more than one level above the single

pixel level. Hence the nonleaf nodes have degree at most 9

(four brother neighbors in the array; one father neighbor and

four son neighbors in the tree) , while the leaf nodes have

degree at most 5 , except that if a leaf node at the single

pixel level is also serving as a nonl~ af node , it has degree

• at most 10 (four brothers , two fathers, four sons).

If augmented memory is available, any quadtree leaf node

can find the leaf nodes whose blocks are adjacent to its block ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~------



~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- ---•- —— - _ _ _ __~.. - - • - - - .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••- - -  - —

e.g. on the east, by proceding as follows: The node sends

a siqnal up the tree, keeping track of its sequence of upward

moves, until it arrives at a node from its northwest or south-

west son. The signal then travels downward, using the mirror

images of the upward moves. If it reaches a leaf by the time

the move sequence is exhausted , that leaf is the given leaf ’s

sole eastern neighbor ; otherwise, it continues downward and

westward , splitting whenever a choice is available, until

leaves are reached. The signal can carry with it a direct

link to its originating node. Unfortunately , it does not

seem to be possible to do this for all leaves at once, since

many upward moving signals may collide at the upper levels

of the tree.

As a generalization of the quadtree construction process,

instead of checking for perfect uniformity in each block , we

can compute the mean and standard deviation of its values,

and subdivide it only if the standard deviation is high. This

can be done in 0(block diameter) time if the nodes have aug-

mented memory. 

- ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ 
-• 

~~~~~~~~~~~ 
- —.-..---

~~

-

References

(1] A. Wu and A. Rosenfeld , Local Reconfiguration of
Networks of Processors. TR—730 , Computer Science Center ,
University of Maryland , February 1979.

(2] D . E. Knuth , The Art of Computer Programming Vol. 3: Sorting
and Searching. Addison Wesley, 1975.

[3] ~~~. Dubitzki and A . Wu, Cellular d-graph Automata
with Augmented Memory. TR-77l, Computer Science Center ,
University of Maryland, June 1979.

[4] A. R. Smith, Two-Dimensional Formal Languages and Pattern
Recognition by Cellular Automata, 12th Annual Symposium
on Switching and Automata Theory, 1971, 144-152.

[5] S. R. Kosaraju, Fast parallel processing array algorithms
for some graph problems , Proc. 11th ACM Symp. on Theory
of Computing, 1979, 231—236 .

[6] C. R. Dyer, A. Rosenfeld and H. Samet, Region representation :
boundary codes from quadtrees . TR—732 , Computer Science

P - Center , University of Maryland , February 1979.

-- - -~~ - - -- - — -•- ~~~~~~~~~~~~~~~~ --- - - -~~~~~ --


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—•.,

~~~~~
“- .- ,—--——- --.---.-—--•-.•.---••— - - .—— -••-— — - -,

~~~~~~~~~~~~~~~~~~ ~~~~- -——----- - ----
~
•—- - - -—- -- -—--•—,-••.-—— ,—

~
-—-- ,  •- - -

— 

- 

- 
- — 

: ~ 
! \ 1 :

I 
~~ 

t

• 
‘
~~ 

~r r R  RI R R R , R 1 I

I
-

‘ 
“vertical” trees

- t Fig. 1 Fig. 2

= i log2(s)i __ Z .
~~~

_.
~~~

S nodes

- _[ - - 

.

h= L 1og2 (r-l)J~~ 
_ _ _ _  

___  A ~~~~~~~~~ r nodes

Fig. 3

DD 
• ~-z........ hanging

marked point

/ J~N~\ / I \
Fig. 4 Fig. 5 

•~~~~~~~~~~~ 
-



- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ w — -------- ~~~~~~~~~~~~
—

~~
-- -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—- ~~~~ II~

_ _ _ __ _ _ _ ___
D

_ _ _

-

t - Fig. 6 Fig. 7

-~

marked nodes

Fig. 8

A ’ A
I ‘

~ I ~~ I ‘

~.1. 1 . / 1 1 1
1 1

Fig . 9

- — —-- ~~~~~ -~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~

- --
~~  ~~~~~~~—-- -  — ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --



-~~ -— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~ - -- - — 
_ r~~~~~~~~~~~~~~~~~ ‘~~~~~~ -

F, D
(
~
)

x X x I x x

actual
marked subdivision —

subdivision column
column

- Fig. 10: Quad tree construction.

‘x --roots of subtrees in the quad tree.

I -~~- ----—-- -----— --. — - - 
s____________a__ -- —--~~~----~-,— —, -- - . , 

. -



-
~

-- —.- - - --- — — ----
~

--- ---——-
~

- -- . -- 

- . - • ‘-k-- ; - -.- -
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

SCCUR;Tv ~~~~~~~~~~~~~~~~~~~
REPORT DOCUMENTAT 1O~ PX~E ’  BEF~~~~~

D
C~~~~~~~~~~~~~~~~~~~~~

1. REPORT NUMBER 2. GO T ACCESSION~~~~ 2. RECIPIENT’ S CATALOG NUMBER

AFOSR”Th~ ~ 9 - 1 1 5 9l ( ’ _____________
4. TITLE (ond Subtftf.) S. TYPE OF REPORT 6 PERIOD COVERED

LOCAL RECONFIGURATION OF NETWORKS OF Interim
PROCESSORS: ARRAY S, TREES , AND GRAPHS

- 6. PERFORMING ORG. REPORT NUMBER
F TR—790 \

7, AUTHOR(.) 
- 

• CONTRACT OR GRANT NUMBERç

Tsvi Dubit-zkj, AFOSR-77-3271~~~fAngela Wu
Azriel Rosenfeld

9• PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , TASK
• , AREA & WORK UNIT NUMBERSComputer Vision Laboratory, Compute~Science Center , University of Maryia’nd, 61102F 23o4/A2College Park, MD 20742

II. CONTRO LL IM(~ (~~~~~~IV ~~~ ti cur A W D  A DDRESS 12 REPORT DATE

Air Force Office of Scientific Research/NM July 1979
Boiling AFB 13. NUMBER OF PAGES

Washington , DC 20332 25
14. MONITORING AGENCY NAME & ADD RESS(I1 dilfetent from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS., DECLASSIF ICATION/DOWNGRADING
SCHEDULE

15. DISTRIB UTION STATEM ENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRiBUTION STATEMENT (of the ebetract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NUTES 
- 

-

IS. KEY WORDS (Consinu. on rqvers~ aide if n.c.a.sry wd Id.ntily by block numb.,)
Networks
Cellular automata

-; Trees -

Arrays

20. AB ST RACT (Continu, on rev.,.. aid. II n.c..e., ~ ,d Identify by block nu mber)

This paper studies local reconfiguration of trees into arrays
and vice versa. It also studies the construction of adjacency

- - 
graphs and quadtrees for images stored in cellular array pro-
cessors.

DD 
~~~~~~~ 

1473 EDITION OF I NOV 61 IS OBSOLETE UNCLASSIFIED -

SECURITY Cl. AS SIF ICAT ION OF THIS PAGE (Wh.n Det. Enier.d)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
.

~~~~~~~~~~~~
•

;
_ •

~~~~~~~~~~~~~
,-

_

- - -


